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Abstract
This paper describes a design driven approach to drive intelligent test plan generation based on adaptive use case [3,5]. Its 
foundation is an object-oriented software design approach which partitions design schema into design architecture of functional 
components called "design component". A use case software development methodology of adaptive use case approach developed 
in I.I.T is employed which preserves this unit architecture on through to the actual code structure. Based on the partition design 
schema produced during the design phase of this methodology, a test plan is generated which includes a set of component and 
scenario based test. A software metric is introduced which produces an ordering of this set to enhance productivity and both 
promote and capitalize on test case reusability. This paper contains an application that illustrates the proposed approach.
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Ⅰ. Introduction

This proposed paper is based on the use case approaches 
defined  by Jacobson [6], UML, Carlson [3] , and Hurlbut [5]. 
Specially, Iva Jacobson mentions reusability on all software 
development activities in Seoul's lecture  and New York's 
Object Symposium 2000 even if most persons focus on 
reusability of source code level. 

Therefore, focusing on design phase, this idea begins by 
considering possible ways to enhance Hurlbut's action matrix 
concept [5] bring software testing concepts into design. 
Hurlburt's notion of an action unit needs to be refined based 
on a conceptual analysis of the method sequences found in 
sequence diagrams (called message interaction diagrams), 
which, by the way, is the first significant artifact produced 
during use case design. 

Our preliminary analysis of this issue has resulted in the 
introduction of the concept of a "design component". Several 
definitions for a design component have emerged from our 
research for the designer to choose from depending on the 
level of abstraction desired and the preference for testing 
techniques to be applied. Even some definitions of this 
component guilds to generate skeleton code.

To provide an automated process by which an action matrix  
can  be produced, thus, leaving the designer with only an ad 
hoc, manual approach, we need to develop an algorithm to 
produce the action matrix from sequential diagrams (called 
Interaction diagrams). 

Such an algorithm would significantly improve the 
productivity of the designer in producing such potentially 
useful information. This conversion algorithm is developed to 
identify or extract each type of design unit from the basic 

interaction diagram in which deals with single control object 
and the other containing multiple control objects.

The action unit component of an action matrix is defined 
as specific design units of sequential diagram (called 
interaction diagram) for easily identifying reusable design 
component with test plan metrics. 

Several possible definitions of design units is introduced, 
each processing different testing characteristics. The scenario 
component of a action matrix is defined for the purpose of 
generating a preliminary test plan. 

Ⅱ. Design Component 

This idea is based on object-oriented behavioral design 
which partitions design schema into a layered functional 
components called "design component". Based on the partition 
design schema produced during the design phase of use case 
methodology, we can find the information of reusable design 
units, and generate test plan which includes a set of unit and 
scenario based tests on early stage rather than test stage.

2.1 Definition of Design Components
One of the first artifacts produced during the design 

component phase is a sequential diagram based on use case 
methodology. The message sequence defined by the sequential 
diagram can be partitioned into a sequence of design 
components.

 As a result, different testing techniques may be appropriate 
depending on the choice of deign component. Based on a this 
layered architecture, we can also identify the design reusable 
components through object-oriented behavioral design of use 
case methodology. 

Therefore, this provides the design and test team member 
with different options to choose from at design time. Several 
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partitioning strategies are possible, each resulting in a design 
component specification that exhibits different characteristics, 
particularly at boundary points between adjacent design 
components 

Method component: method executed by an object in 
response to a message. Consider the simple sequential diagram 
described in Figure 1. In this case there are six methods 
labeled m1,m2,m3,m4,m5, and m6. There are the distinctive 
design components. The simplest choice is to let each method 
be a design component.

m5 

m1

m4

m2 m3

m6 

Fig. 1. Example of a Method Component

The people assigned to develop this component, therefore, 
be in the best position to perform unit testing because of their 
familiarity with the component. A drawback to this approach 
is the large number of design components to be tested. No 
additional properties of such a design component can be 
assumed on which to base a specific testing approach. In this 
component case, we may not mention the reusable component 
of all design components.

Reusable Pattern Component : Sequence of methods executed 
by a particular object pattern.

Illustrate a possible grouping of methods based on (presumed) 
reusable pattern components. This simple vending machine 
example contains just reusable patterns. 

a 

b 

c 

m1 m2 
m3 

m4 m5 m6 

Vending machine : 
- method: 

m1: insert coin 
m2: check coin 
m3: measure the weight of coin 
m4: judge what coin
m5: notify  
m6: notify 

- reusable pattern unit:
a = m1+ m2; 
b = m3 + m4; 
c = m5 + m6; 

Fig. 2. Example of a Reusable Pattern Component

If a library of reusable design components was used to 
develop the sequential diagram (called interaction diagram), 
then they could be used to define the design components. The 
major advantage of this choice is that both code and test 
specifications may already exist for these components. Further, 
standard interfaces between these design components may 
already exit, a characteristic that is essential for system 
evolution. Each reusable pattern component in this example 
has a single input and single output (SISO) characteristics. In 

general, a pattern can have any one of the input and output 
characteristics described in Figure 3. Good reusable patterns 
are the ones whose interface supports some degree of 
standardization. This could have worthwhile implication for 
the development of standard component testing practices

SISO

SIMO MIMO

MISO

Fig. 3. Characteristic interface of  SISO, MISO, SIMO, MIMO

The cardinality of pattern's interface is a key factor towards 
achieving this goal. The cardinality can be applied to the 
number of message or objects that define the interface. While 
a pattern may need to support multiple messages, it does not 
mean that multiple objects are required to define the interface. 
Greater control can be achieved, particular across multiple 
system releases, if the interface to and from a pattern is 
limited to a single object. Of the patterns described in Figure 
3, the SISO pattern is preferred because it simplifies the 
testing  process. However, that may not always be possible. 
What we don't want it for there to be a cross-product of 
input/output, i.e., all possible combinations M*N in a MIMO 
pattern. If, however, each input & output are uniquely paired 
{1-1}, then MIMO can be reduced to a set of SISO protocols 
as follows: {1-1} {2-2} {3-3} in MIMO in Figure 3.

State Component : sequence  of   methods  executed   during  
the  interval  bounded  by consecutive states as defined by 
the corresponding event state model.

illustrates a possible event state transition scenario for a 
simple ATM machine. We analyze the interaction diagram and 
creates an event state model for subsequent code generation. 
Our proposed action matrix algorithm follows the same 
partitioning scheme to provide design components, thus 
providing the developer with needed information to 
"standardize" code development practices．We can identify 
state components as the result of the messages (m) received 
by control objects and sent from control objects. We can 
identify each state for a particular object, that is, the control 
object(s) such as 'S1' and 'S2'. Stable states are important 
[Carl99] for establishing database consistency throughout a 
process, a framework for process evolution during subsequent 
software releases and standardization of system behavior 
associated with each state. 

Let's use  simple ATM Machine:
Method
m1: push withdraw button
m2:  request withdraw  
m3: request a user's status to the main bank computer
m4: check the user's status
m5: withdraw money
m6: money come out
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State
S0: an initial state
S1: a withdraw requesting state 
S2: a withdraw state 
Condition
PC: pre-condition 
PS: post-condition

  

m1 
  m2 

m3 
  

m4 
 

m5 
  m6 

  

S0 
  

S1 
  

S2 
 

PC 
  

PS 
  

PC

PS

S1 
  

S2

PC             
PS 

  
[    S1, S2]

Fig. 4. Example of State Components

From a testing point of view, a predicate expression 
capturing this stability can be associated with each state. A 
state component is defined by a sequence of methods executed 
during the interval bounded by consecutive states. A state 
component can be characterized by a state pair (Si, Sj) and 
can be enhanced by the predicate conditions associated with 
each of these states. Thus, a testable state component can be 
regarded as a triple (Pre-condition (PC), State Pair, 
Post-Condition (PS)). This approach has been coordinated with 
the parallel research  on the algorithmic generation of event 
state tables. The implication is that a systematic approach to 
embedding component test stubs internal to the event state 
table driven code is established. We also provide a 
comprehensive analysis of various interaction diagram features 
and how these features affect the automatic generation of an 
event state model. The following discussion illustrates how 
predicated expression associated with an interaction diagram 
can be used to generate a testable triple associated with state 
transition pairs. 

These representations of the state are assumed to define the 
behavior of the particular 
object, that is, the control object(s)  in addition  to  the notation 
for a choice with  possible n-ary branches. In this notation a 
choice is represented by 'a black colored rectangle bar' on 
vertical line of the control object.  

The proposed state boundary based testing approach will 
check the condition of a particular object. For example, it 
checks a precondition when a message comes in. If the 
condition is satisfied, then it will transfer to the next state. On 
a decision node with a binary branch, it will transfer to either 
one state or another state according to each postcondition. 
Thus, the state boundary based testing will check the 
precondition of a state pair (Si, Sj). As a result of the 
condition (that is,  PC [ S1, S2|S3 ] PS1|PS2 ) it will transfer 
to either S2 or S3 in Figure 5.

Maximal Linear Component (MLU): a sequence of methods 
executed during the interval bound by consecutive choices 
(both actor and object choices).

 

s1

s2 s3

s1

PC

PS

s2

PC

PS1 PS2

s3

Fig. 5. Changing the State on a Decision Node

Consider of this example that an MLU  is  the same as  
the dialogue component  if  no choice/ branch nodes exist 
except for the actor. 

Figure 6. includes a choice node for the control object. 
Thus, the  MLU for this interaction diagram is (a,b), (c), and 
(d,e). 

The significance of this design component is that it 
establishes reference points for straight line testing techniques 
during design. Without an embedded breakpoint (decision, 
branch, or collection point) this component is the same as the 
dialogue component. With a decision node within a dialogue 
boundary point, each MLU is represented by {<Si1, Si2, …
Sin>}, that is, a linear sequence of state changes Si1 through 
Sin and branches before and after.

 

a b

d

c

       A ction
Scenarios  a    b   c    d   e  

Sc.1    1   2    3 

e

Sc.2    1   2         3   4 

Im 1

Om 1

Om 2
M LU1

M LU1

M LU2

M LU3

M LU2 M LU3

Fig. 6. Example of MLUs (Max Linear Components)

Dialog Component : a sequence of methods executed during 
the interval bounded by input from an actor and the response 
to that actor.

In an interaction diagram with the choice notation of Figure 
7,  sequences of messages / methods are executed during the 
interval bounded by  input from an actor and the response to 
that actor. We can identify all possible paths from an actor 
through the system to itself such as dialogue 1 (‘a b c’), 
dialogue 2 (‘a b d e’), and so on. 

 

a
b

d

c

       Action
Scenarios  a    b   c    d   e 

Sc.1    1   2    3 

e

Sc.2    1   2         3   4 

Im 1

Om1

Om2 DU1:(Im1, Om1) = {a, b, c }
DU2:(Im1, Om2) = {a, b, d, e }

DU1

DU2

Fig. 7. Example of Dialogue Components 



Intelligent Test Plan Metrics on Adaptive Use Case Approach

73

This design component has significance for establishing 
user (actor) acceptance test specification during design. These 
specifications should be a refinement of user acceptance test 
specifications defined by use case specifications during the 
requirements phase. We can also consider a reusable design 
pattern of this deign components. As part of the requirements 
tracking process, each use case should be tracked to a set of 
dialogue components at design time. DU represents {< Mi1, 
……. Min>}, that is, the actor initiates Mi1(message) and 
receives Min (message) and all other message are internal. 
Dialogue is (Im, Om) where Im is an input message and Om 
is an   output message on the actor. 

Ⅲ. Refined Action Matrix Approach

From this point, we will explain with one case study based 
on a 'Restaurant application' use case in Figure 8.  Focusing 
on the customer actor's view, there are three high-level use 
case scenarios such as the reservation, the normal service, and 
the carry-out  process.

From the requirement specification and the high-level use 
case scenario analysis, we can design the sequential diagrams 
(called interaction diagrams) through passing several steps. In 
this paper, I will skip several steps to develop three sequential 
diagrams from high-level use case scenarios showed in 
Kim[11, 12, 14, 15] With these sequential diagrams in Figure 
9, I can convert the action matrix and use case map dialog 
through producing these sequential diagrams based on 
high-level use case scenarios at design stage. One of these 
sequential diagrams is 'Reservation use case' in Figure 9.

What is action matrix?  Hurlbut [5] noted that an action 
matrix presents  a  cross-match  between  each action  that  
is  included  in  a use case with each scenario that performs 
the action. scenario includes an ordered set of actions that 
explains its course of actions. The use case action matrix is 
intended to present the scenario designed in a tabular form as 
the main course of action as a collection of actions that shows 
the coverage of its use case action by all the variant scenarios 
in Figure 9. Hurlurt also mentions that an alternative 
representation of the matrix is a use case dialog map in 
Figure 10.
Semantics : Each scenario consists of an ordered collection of 
action units. The extended action matrix is

intended to tabularly represent the scenario designed as the 
main course of action unit as a collection of cells that shows 
the coverage of its use case action component by all variant 
scenarios. Each action unit consists of the cluster of the 
consecutive messages (methods, the basic actions) triggered, 
also relates between the state and next state, and involves the 
particular objects which send these messages.

Notation: In The first row of a matrix, each cell is matched 
to a unique use case action unit and scenario combination. 
The rows of a matrix are assigned as scenarios and the 
columns are assigned as action units. If a use case action unit 
is also included in the scenario, we make a one-to-one 
correspondence between cells and integers which results in 

sequential ordering of the use case action units in the 
scenario. When a single use case action unit appears more 
than once in a scenario, we can assign multiple not 
necessarily contiguous integers in each cell. Since a bunch of 
the consecutive use case action units may appear iteratively in 
a scenario, we may parenthesize a bunch of integers that are 
related with  consecutive use case units.

U S E  C A S E  S C E N A R IO  :  n o r m a l  s e r v i c e

C u st o m e r

C u s t o m e r

 p a n e l

t a b le 

U S E  C A S E  S C E N A R IO  :  r e s e r v a t i o n

C u st o m e r
c u st o m e r

   p a n e l

R e s ta u ra n t   
 m a n a g e r

d e s se r t

m a in  m e a l
w a it re s s t a b le 

U S E  C A S E  S C E N A R IO  :  c a r r y  o u t

C u st o m e r

d e s se rt

m a in  m e a l

R e s ta u ra n t  

 m a n a g e r

m a in  m e a l

w a it re s s W a it- in 
- ro o m  

c u st o m e r

   p a n e l

R e sta u ra n t  

 m a n a g e r

W a it- in 
 - r o o m  

w a it re ss 

Fig. 8. High-level Use Case Scenario 'Restaurant Service' 
Application

Presentation Option: An alternative representation of the 
matrix is possible by converting use case action units into 
nodes in a direct graph with the Mealy's and the Moore's 
Finite State Machine as well as Musa's Operational Profile 
concept. When the matrix is presented in this fashion, it may 
be alternatively refereed to as a use case dialog map that is 
mentioned by Hurlbut [Hurl98].

 1           2     3     4     5    6     7     8     9    10   11   12  13   14

  Main Path 
(Reservation.)

    Variant 1
(Normal served)

 1                         2     3     4    5     6     7     8     9    10   11  12   13

 Variant 2  
(Carryout)

 1                                                                                                     2
   Variant 3
 (No Served)

 a1   b1   c1   d1   e1    f1   g1  h1   i1    j1   k1   l1     m1 n1   o1   p1   r1 Total probability
of occurrences

0.5*1*0.9*1*1*1
= 0.45

0.3*1*0.99*1*1*1
*0.9*1= 0.24057

0.3*1*0.001*1 
= 0.0003

0.2*1*0.1*1*1*1
= 0.02 1    2     3            4    5     6     7     8     9    10   11  12   13

Action unit \
Scenario

Fig. 9.  Action Matrix for Restaurant Service Application

Mapping : Each  column  maps  to  a  use case action unit.  
Each  row  maps  to  a  scenario. In a use case dialog map, 
we assign each probability of occurrence to each link as a 
weighted probability value, which is adopted by Musa's 
Operational profile [9, 10]. Musa's approach is a quantitative 
characterization of a system, which is retained for the 
most-used part of the system and is reduced for lesser-used 
parts with the amount of reduction related to the difference in 
usage. That is, Musa's operational profile is frequently 
weighted by criticality that reflects both how the system is 
being used and the relative importance of the uses. We may 
either guess the probability of occurrence on each branch of 
the specific node (action) or survey the collection of data [3, 
9, 10, 12, 13].
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Ⅳ. A Conversion algorithm from sequential 
diagrams to design component/ Action unit 

Hurlburt [5] provided a tabular approach, termed an action 
matrix, to the specifications of functional units. But, Hurlbut 
failed to provide a mechanism that generates action matrices 
from interaction diagrams. We have adapted his approach to 
clearly represent all possible scenarios without keeping too 
much duplication of action units. We also use the action 
matrix and the use case dialog map to organize the behavioral 
properties of the design, and to help generate the preliminary 
test scheme and test plan by analyzing the interaction diagram 
at the design stage. 

The proposed algorithm has been influenced by several 
other researches. In this process we have extended the action 
matrix and use case dialog maps based on the advantages of 
both the Moore [8] and Mealy [7] models in that the Mealy 
model more easily represents a finite-state model by a table 
and the Moore model is a node-weighted finite-state model.  
In addition to applying these two models, we integrate Musa's 
idea of operation profiles into the refined action model and 
use case dialog map, which helps develop our test plan matrix 
approach [12,13].

The following assumptions have been used in the 
construction of the algorithm:

1. The input of the conversion algorithm is the basic inter-
action diagram(s) with either a single control object or 
multiple control objects.

2. The output of the algorithm is a collection of design 
components of which the action matrix consists. 

3. When there are no more external messages, the process is 
terminated.

4. When an actor sends an initial external event to the system 
(that is, the interface object), it initializes a state S0.

5. Messages are called internal messages within the system 
(from the interface object), Messages can be events, 
methods (functions), or actions.

6. It happens the state changes on just the control object(s), 
and has the choice notation(s) which makes the decision 
(can apply n-ary branches) on the control object(s), 

7. The state change on the control object(s) 
8. For while internal messages are traced by the control 

object, they will be clustered by an action unit.  
9. When a message exits the system or the interface object 

sends message to its own actor, the message is also called 
the external event. 

10. Initialize indexes for identifying each message (m), clustering 
messages (i), setting to change state(j), and clustering 
dialogue(k).

11. On the choice notation, we traverse the interaction diagram(s) 
using Depth-First Search, called recursively.

How to identify design units to be traced on the Interaction 
Diagram? First, I explain a simple algorithm to identify design 
component  in four steps: 

1) Identify each method component starting from the initial 
external event until there are no more messages on the 
interaction diagram.

2) Identify  each state  on  the  control  object (the so-called 
'state object'), which will  change  whenever a message 
comes in and out.

3) Also identify each reusable pattern component which  is  
the cluster of sequenced methods based on the boundary 
of states.

4) Identify each dialog component based on its  response 
from the system after each external event occurs.

b1 d1

a1

e1

Served

f1 g1 h1 i1

Enter
& request

c1

 r1
No served

Reservation 

Carry out 

 No service (variant 3)

0.5

0.3

0.1

 Normal serv ice Wait-in-room

  Arrange
 waitress

Assign
 table

 Serve 
  meal

1

0.99 1 0.9 1  11 1

0.1

0.001

 j1 l1 m1

     Cook Receipt
11

Accept
Request 
    bill

Send 
  bill

1 n1k1

Ready

Order

0.1

1
 o1 1 p1 11

Calculate
   bill

Pay
bill

1

Fig. 10. Use Case Dialog Map for Restaurant Service Application

Ⅴ. Test Plan Metrics based on Design Stage

Most existing testing methods for white-box testing and 
black-box testing[1,11] are developed for traditional procedural 
programs. Recently, object-oriented software testing methods 
have been developed for object oriented programs with 
white-box testing. None of the existing methods of testing 
'design' at the design stage can directly be applied for object 
oriented development methodologies. We propose to develop 
different metrics for test plan developed based design. Our 
testing approach emphasizes testing software design 
specifications in the design stage while traditional software 
testers concentrate on testing the program source code. 
Actually, metric concepts are frequently used on routing in 
switching networks. But We brought the metric concepts to 
the software development in that the motivation for metrics 
should come from ordering the unit & acceptance tests due to 
the large numbers & ordering of scenarios in integration 
testing. 

5.1 Test Plan Metrics
This chapter focuses on the software testing metrics used in 

the generation of object oriented test plans as part of Carlson's 
use case methodology[3]. The test plan uses an action matrix 
that contains a collection of executable sequences of use case 
action units. The action matrix is generated from the 
interaction diagram at the design stage.  Software testing 
metrics are employed to improve the productivity of the 
testing process through scenario prioritization. In other words, 
the software test metrics are available to evaluate the use case 
scenarios defined by the action matrix so that a test plan will 
emerge that improves the productivity of the testing process. 
The tester has a broad range of options to choose from when 
identifying 'action units'. The simplest choice is to let each 
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method be an action unit. A drawback to this approach is that 
the number of action units may be quite large.  If so, the test 
plan generator can choose one of the other options based on 
the design component (or test units) concept introduced. In 
selecting 'reusable pattern component', the assumption is that 
reusable pattern design components are also used as part of 
the design process. In selecting 'state units', the assumption is 
that an event state model has been developed.  Presently, We 
have a conversion tool that analyzes interaction diagrams, and 
automatically generates 'state component'. The same tool can 
be used to automatically identify 'dialogue component'. The 
basic reason for choosing one of these units is that each 
offers its own unique approach to unit testing based on 
proven testing techniques. For example, reusable pattern test 
plans can be used with reusable pattern. State based testing 
techniques can be used with state units. Actor based 
acceptance testing can be used with dialogue components. 
Scenario based integration testing techniques can be used with 
use case scenarios to identify an ordered list of test scenarios.

User acceptance testing can be used with use case 
requirements. Based on this choice, the test plan contains a set 
of action units together with appropriate unit testing 
techniques to be applied to these units. The software metrics 
described in the next section can be used to yield a more 
productive order in which these units can be tested.  

The purpose of this chapter is to 'optimize' the order in 
which the scenarios defined by the rows of the action matrix 
are executed. This approach was adopted from Musa's work 
on Operational Profiles [9,10]. Musa's approach assumes that 
the designer has sufficient insight to assess the 'criticality' of 
action units and assign weighting factors to the elements of 
the action matrix [7,8]. This approach differs in that the 
designer analyzes the scenarios based on the 'reusability' of 
their components or subpaths. 

Table 1 illustrates the test plan metrics such as most critical 
scenarios, most reusable components, and most reusable 
subpaths. The software test metrics  described in this section 
focus on the length, criticality and reusability properties of the 
scenarios / action units as summarized in Table 5.1.

Table 1. Test Plan Metrics 

   Length 

 Criticality

    Reusability 

1) Shortest path (simple path)  - least steps of actions

2) Longest path (hardest path) - most steps of actions

1) Most critical path

2) Least critical path 

 1) Most reusable components 

Sub-path  Most reusable sub-path 

 2) Least reusable components
Component

Weight  value
       ( w) 

Measures of test path
    

w = 1  

≥ 1w  

≥ 0w  

≥ 0   AND  ⎤ = 1w  

w > 1 

w > 1 

*notation:  w: weight value   u : not

First, the issue of Length is two aspects of shortest path 
and longest path. I think it is not important for software 

design development. But it is useful if we use this issue with 
other categories of the metrics. 

Second, the issue of Criticality is important to choose an 
ordered list of test scenarios. 

Third, the issue of Reusability is also important to identify 
and maximize the reusable components. Therefore, we use 
scenarios and action units to develop a new path (i.e., 
scenario) with the smallest number of alterations from the 
existing paths.  

To apply test plan metrics for each of the approaches 
described in Table 1 will be applied to the "Restaurant 
service" application. 

We calculate total probability of occurrence as follows :
∀i Use case Scenarioi ⊆ A Use Case R (R is  Restaurant 

Application) 
For all use case scenarios between the starting point and 

the ending point, the particular scenario Scenarioi is included 
in a Use case R.

∀i action uniti ⊆ use case Scenarioi

For all action units within a particular use case Scenarioi 
we can calculate the total probability of occurrence with 

(∏ the weighed factor of Action unit i
* probability of 

action uniti) / (∑ probabilityi). 

b1 d1

a1

e1

Served

f1 g1 h1 i1
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& request

c1

 r1
No served
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Carry out 

 No service (variant 3)

0.5

0.3

0.1

 Normal serv ice Wait-in-room

  Arrange
 waitress
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 table
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  meal

1

0.99 1 0.9 1  11 1

0.1

0.001

 j1 l1 m1

     Cook Receipt
11

Accept
Request 
    bill

Send 
  bill

1 n1k1

Ready
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0.1

1
 o1 1 p1 11

Calculate
   bill

Pay
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1

Fig. 11. Ordered List of Test Scenarios

Figure 10 shows the alternative representation of the action 
matrix, the use case dialog map, to apply the calculation of 
the total probability of occurrence in each use case scenarios. 
Figure 9 shows tabularly all possible action units of each use 
case scenario in the use case restaurant service. The Mealy 
model and the Moore model are theoretically equivalent, but 
the Mealy model is a link-weighted model and the Moore 
model is a node weighted model [Beiz95]. We apply with 
both weight concepts. As a result, each action unit is assigned 
a weighted value with the value one and each link is also a 
probability of occurrence.

Most Critical Scenario
The  first  metric  is an  adaptation of  Musa's  'most  

critical  operational  profile' approach [9,10]. This metric 
places greater weight on those scenarios that use action units 
thought to be most critical. It assumes that the designer can 
make these judgments. Later metrics will not have to assume 
that someone is available to make such judgments, since they 
can be produced automatically.

Figure 9. shows the action matrix of the restaurant service 
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application. The use case scenarios defined by the rows of 
this matrix include: reservation (variant 0), normal service 
(variant 1), carryout (variant 2), and no served (variant 3) use 
case scenarios. The probability of occurrence of each scenario 
is:  variant 0 (0.45), variant 1(0.2673), variant 2 (0.02), and 
variant 3 (0.0003). As this result, we can make a decision to 
choose the 'reservation' scenario because it has the highest 
value of probability of occurrence. Figure 11 displays the 
ordered list of test scenarios as follows: the first direct path of 
reservation scenario which consists of the sequence of action 
units 'a1->e1->f1->g1->h1->i1->j1->k1->l1->m1->n1->o1->p1' 
with the amounts of weighted values equal to 13, the second 
direct path of normal service scenario which consists of 
sequences of action units 'b1->d1->e1->f1->g1->h1->i1->j1-> 
k1->l1->m1->n1->o1->p1' with the amounts of weighted values 
equal to 14, the third direct path of carryout service scenario 
which consists of sequence of action units 'c1->d1->e1->g1-> 
h1->i1->j1->k1->l1->m1->n1->o1->p1' with the amounts of 
weighted values equal to 13, and the fourth direct path of no 
service scenario which consists of sequence of action units 
'b1->r1, and other combinations like Figure 11.

Most Reusable Components
This approach simply measures the reusability of action 

units in each row of the action matrix. This metric places 
greater weight on those action units that are reused the most 
by the collective group of scenarios being analyzed.

Figure 12 (a) displays three different types of geometric 
figures: a triangle, a rounded rectangle, and an oval. The 
triangle implies a particular component is used just one time 
on just a single one of the paths. The rounded rectangle 
implies that this component us used on two paths. The oval 
implies that this component is used on three paths. The 
reusability weight is defined as the number of paths that use 
the particular component. 

Therefore, Figure 12 (b) shows the values 'reusability 
weight' of each action unit. The values can indicate whether a 
particular action unit is reusable or not. We may say that the 
unit action is reusable when the value of the particular unit is 
at least 2.

Figure 9 indicates the total values of reusability components 
on each path (scenario). Due to the 'most critical scenario', we 
say that path1 (reservation) is better than path 2 (normal 
service), which is better than path 3 (carryout), which in turn 
is better than path 4 (no service). But if we measure each 
path based on the 'most reusable component', then we 
recognize that path 2 (normal service) is more usable than 
path 1 (reservation).

Most Reusable Sub-Paths
This metric is similar to the previous metric except that it 

places greater weight on scenarios which share common 
subpaths. We shows how to identify each cluster of the 
sequence of reusable components in all possible scenarios of 
the restaurant use case application[2]. Figure 12 show three 
different types of geometric figures: an elliptical figure, a 
shaded elliptical figure, and a rounded rectangle. The elliptical 

figure shows the cluster over two paths with reusable 
subpaths. The shaded elliptical figures show iteratively or 
repeatedly the cluster of reusable subpaths in paths. The 
rounded rectangle displays the smallest cluster, which  consists 
of two components, in paths, but it is less useful because this 
size is smaller than the smallest dialog unit within this 
application. It displays the core pattern (cluster) in the use 
case dialog map [2].

 1                2       3      4      5        6       7      8       9     10     11    12    13     14

  Main Path 
(Rese rvation.)

    V ariant 1
(N orm al served)

 1                                  2      3     4       5       6      7       8      9        10   11     12    13

 V ariant 2  
(Carryout)

 1                                                                                                                               2
   V ariant 3
 (N o Served)

 a1     b1    c1      d1     e1       f1     g1    h1     i1     j1      k1    l1     m 1    n1     o1    p1     r1

 a1     b1    c1     d1      e 1      f1     g1    h1     i1     j1      k1    l1     m 1    n1     o1    p1      r1

W eighted value

R eusability W e ighty  1       2      1      2        3        2      3      3       3      3        3     3       3       3       3       3       1 

   1       1     1       1       1         1      1      1       1     1        1      1      1       1        1       1      1

P ath 1 Path 2 Path 3 Path 4

#3

#2

 Total
am ount

11                11             11                  0

 1                 3                 1                  1

35              39               35                2

 1       2       3              4        5        6      7       8       9      10    11     12    13

(a)

(c)

(b)

Fig. 12. Most Reusable Component

On path1 and path2, we can see the 'longest reusable 
subpath' which is 'e1' through 'p1' represented by the ellipse. 
On path1, path2, and path3, we can see the reusable subpath 
'g1' through 'p1',represented by the shaded elliptical figures.

Length of Path
This metric is not meaningful for itself in our approach, but 

applies the most reusable subpath to measure the length of the 
subpath. Based on the ordered list of test scenarios with the 
most critical scenario, we can find the shortest and longest 
length of all paths from the starting point and the ending 
point. 

If we just use this metric to identify a important path, it is 
not meaningful that path 4 is the shortest path with two action 
units and path 2 is the longest path with fourteen action units. 
In reality, we say that the shortest path (no service) is a 
dummy path (no service). After done by most critical scenario, 
we had better apply this metric to recognize the most 
important  subpath.  Therefore,  we can use  this metric of 
the shortest and the longest path on the concepts of most 
critical scenario and most reusable component.

Collection of Total Reusable Weight Values and Total Critical 
Weight Values. Finally, we can calculate the collection of total 
reusable values and total critical weight values to find the 
significant unit/path. We adapt Musa's frequent weighted 
approach [Musa92,93]to our critical weighted issue. 

We calculate total weighted values with the formula below:

Internal shared path (ISP) = ∑(Center-weight (CW) +
Westside-weighted (WW) + Eastside-weighted (EW) ).
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We get the same result as the issue of the most reusable 
component. As a result, we can clearly determine a basic 
main path, by first making an ordered list of all paths.

Ⅵ. Conclusion

Traditional software testers concentrate on testing the 
program source code in the implementation stage or testing 
stage, while our testing approach will emphasize testing 
software design specification (action matrix or state transition 
diagram/table) in the design stage. In the design phase of our 
object oriented development methodology, We will focus on 
testing 'action matrix & use case dialog maps' that is 
generated from sequential diagram (called interaction diagram), 
which represents the behavioral properties of system design. 
That is actually testing  "specifications" before implementing 
real program source codes (program statements). We shall 
suggest scenario based testing which is consisted of most 
critical scenario, most reusable components, and most 
reusable subpaths. Scenario based testing will make a decision 
to order of all possible scenarios to test first, to maximize 
reusability, and to minimize test cases. As a result, this can 
lead for designer to design better system with information of 
reusable design components
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