
International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, March 2002 pp. 70-77

70

Intelligent Test Plan Metrics on Adaptive Use Case Approach

R . Young Chul Kim* and Jaehyub Lee**

* School of Electrical, Electronic & Computer Engineering, Hongik University
** School of Information Technology, Korea University of Technology and Education

Abstract
This paper describes a design driven approach to drive intelligent test plan generation based on adaptive use case [3,5]. Its
foundation is an object-oriented software design approach which partitions design schema into design architecture of functional
components called "design component". A use case software development methodology of adaptive use case approach developed
in I.I.T is employed which preserves this unit architecture on through to the actual code structure. Based on the partition design
schema produced during the design phase of this methodology, a test plan is generated which includes a set of component and
scenario based test. A software metric is introduced which produces an ordering of this set to enhance productivity and both
promote and capitalize on test case reusability. This paper contains an application that illustrates the proposed approach.

Key words : This paper contains an application that illustrates the proposed approach

Manuscript received January 14, 2002 ; revised February
20. 2002

Ⅰ. Introduction

This proposed paper is based on the use case approaches
defined by Jacobson [6], UML, Carlson [3] , and Hurlbut [5].
Specially, Iva Jacobson mentions reusability on all software
development activities in Seoul's lecture and New York's
Object Symposium 2000 even if most persons focus on
reusability of source code level.

Therefore, focusing on design phase, this idea begins by
considering possible ways to enhance Hurlbut's action matrix
concept [5] bring software testing concepts into design.
Hurlburt's notion of an action unit needs to be refined based
on a conceptual analysis of the method sequences found in
sequence diagrams (called message interaction diagrams),
which, by the way, is the first significant artifact produced
during use case design.

Our preliminary analysis of this issue has resulted in the
introduction of the concept of a "design component". Several
definitions for a design component have emerged from our
research for the designer to choose from depending on the
level of abstraction desired and the preference for testing
techniques to be applied. Even some definitions of this
component guilds to generate skeleton code.

To provide an automated process by which an action matrix
can be produced, thus, leaving the designer with only an ad
hoc, manual approach, we need to develop an algorithm to
produce the action matrix from sequential diagrams (called
Interaction diagrams).

Such an algorithm would significantly improve the
productivity of the designer in producing such potentially
useful information. This conversion algorithm is developed to
identify or extract each type of design unit from the basic

interaction diagram in which deals with single control object
and the other containing multiple control objects.

The action unit component of an action matrix is defined
as specific design units of sequential diagram (called
interaction diagram) for easily identifying reusable design
component with test plan metrics.

Several possible definitions of design units is introduced,
each processing different testing characteristics. The scenario
component of a action matrix is defined for the purpose of
generating a preliminary test plan.

Ⅱ. Design Component

This idea is based on object-oriented behavioral design
which partitions design schema into a layered functional
components called "design component". Based on the partition
design schema produced during the design phase of use case
methodology, we can find the information of reusable design
units, and generate test plan which includes a set of unit and
scenario based tests on early stage rather than test stage.

2.1 Definition of Design Components
One of the first artifacts produced during the design

component phase is a sequential diagram based on use case
methodology. The message sequence defined by the sequential
diagram can be partitioned into a sequence of design
components.

 As a result, different testing techniques may be appropriate
depending on the choice of deign component. Based on a this
layered architecture, we can also identify the design reusable
components through object-oriented behavioral design of use
case methodology.

Therefore, this provides the design and test team member
with different options to choose from at design time. Several

Intelligent Test Plan Metrics on Adaptive Use Case Approach

71

partitioning strategies are possible, each resulting in a design
component specification that exhibits different characteristics,
particularly at boundary points between adjacent design
components

Method component: method executed by an object in
response to a message. Consider the simple sequential diagram
described in Figure 1. In this case there are six methods
labeled m1,m2,m3,m4,m5, and m6. There are the distinctive
design components. The simplest choice is to let each method
be a design component.

m5

m1

m4

m2 m3

m6

Fig. 1. Example of a Method Component

The people assigned to develop this component, therefore,
be in the best position to perform unit testing because of their
familiarity with the component. A drawback to this approach
is the large number of design components to be tested. No
additional properties of such a design component can be
assumed on which to base a specific testing approach. In this
component case, we may not mention the reusable component
of all design components.

Reusable Pattern Component : Sequence of methods executed
by a particular object pattern.

Illustrate a possible grouping of methods based on (presumed)
reusable pattern components. This simple vending machine
example contains just reusable patterns.

a

b

c

m1 m2
m3

m4 m5 m6

Vending machine :
- method:

m1: insert coin
m2: check coin
m3: measure the weight of coin
m4: judge what coin
m5: notify
m6: notify

- reusable pattern unit:
a = m1+ m2;
b = m3 + m4;
c = m5 + m6;

Fig. 2. Example of a Reusable Pattern Component

If a library of reusable design components was used to
develop the sequential diagram (called interaction diagram),
then they could be used to define the design components. The
major advantage of this choice is that both code and test
specifications may already exist for these components. Further,
standard interfaces between these design components may
already exit, a characteristic that is essential for system
evolution. Each reusable pattern component in this example
has a single input and single output (SISO) characteristics. In

general, a pattern can have any one of the input and output
characteristics described in Figure 3. Good reusable patterns
are the ones whose interface supports some degree of
standardization. This could have worthwhile implication for
the development of standard component testing practices

SISO

SIMO MIMO

MISO

Fig. 3. Characteristic interface of SISO, MISO, SIMO, MIMO

The cardinality of pattern's interface is a key factor towards
achieving this goal. The cardinality can be applied to the
number of message or objects that define the interface. While
a pattern may need to support multiple messages, it does not
mean that multiple objects are required to define the interface.
Greater control can be achieved, particular across multiple
system releases, if the interface to and from a pattern is
limited to a single object. Of the patterns described in Figure
3, the SISO pattern is preferred because it simplifies the
testing process. However, that may not always be possible.
What we don't want it for there to be a cross-product of
input/output, i.e., all possible combinations M*N in a MIMO
pattern. If, however, each input & output are uniquely paired
{1-1}, then MIMO can be reduced to a set of SISO protocols
as follows: {1-1} {2-2} {3-3} in MIMO in Figure 3.

State Component : sequence of methods executed during
the interval bounded by consecutive states as defined by
the corresponding event state model.

illustrates a possible event state transition scenario for a
simple ATM machine. We analyze the interaction diagram and
creates an event state model for subsequent code generation.
Our proposed action matrix algorithm follows the same
partitioning scheme to provide design components, thus
providing the developer with needed information to
"standardize" code development practices．We can identify
state components as the result of the messages (m) received
by control objects and sent from control objects. We can
identify each state for a particular object, that is, the control
object(s) such as 'S1' and 'S2'. Stable states are important
[Carl99] for establishing database consistency throughout a
process, a framework for process evolution during subsequent
software releases and standardization of system behavior
associated with each state.

Let's use simple ATM Machine:
Method
m1: push withdraw button
m2: request withdraw
m3: request a user's status to the main bank computer
m4: check the user's status
m5: withdraw money
m6: money come out

International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, May 2002

72

State
S0: an initial state
S1: a withdraw requesting state
S2: a withdraw state
Condition
PC: pre-condition
PS: post-condition

m1
 m2

m3

m4

m5
 m6

S0

S1

S2

PC

PS

PC

PS

S1

S2

PC
PS

[S1, S2]

Fig. 4. Example of State Components

From a testing point of view, a predicate expression
capturing this stability can be associated with each state. A
state component is defined by a sequence of methods executed
during the interval bounded by consecutive states. A state
component can be characterized by a state pair (Si, Sj) and
can be enhanced by the predicate conditions associated with
each of these states. Thus, a testable state component can be
regarded as a triple (Pre-condition (PC), State Pair,
Post-Condition (PS)). This approach has been coordinated with
the parallel research on the algorithmic generation of event
state tables. The implication is that a systematic approach to
embedding component test stubs internal to the event state
table driven code is established. We also provide a
comprehensive analysis of various interaction diagram features
and how these features affect the automatic generation of an
event state model. The following discussion illustrates how
predicated expression associated with an interaction diagram
can be used to generate a testable triple associated with state
transition pairs.

These representations of the state are assumed to define the
behavior of the particular
object, that is, the control object(s) in addition to the notation
for a choice with possible n-ary branches. In this notation a
choice is represented by 'a black colored rectangle bar' on
vertical line of the control object.

The proposed state boundary based testing approach will
check the condition of a particular object. For example, it
checks a precondition when a message comes in. If the
condition is satisfied, then it will transfer to the next state. On
a decision node with a binary branch, it will transfer to either
one state or another state according to each postcondition.
Thus, the state boundary based testing will check the
precondition of a state pair (Si, Sj). As a result of the
condition (that is, PC [S1, S2|S3] PS1|PS2) it will transfer
to either S2 or S3 in Figure 5.

Maximal Linear Component (MLU): a sequence of methods
executed during the interval bound by consecutive choices
(both actor and object choices).

s1

s2 s3

s1

PC

PS

s2

PC

PS1 PS2

s3

Fig. 5. Changing the State on a Decision Node

Consider of this example that an MLU is the same as
the dialogue component if no choice/ branch nodes exist
except for the actor.

Figure 6. includes a choice node for the control object.
Thus, the MLU for this interaction diagram is (a,b), (c), and
(d,e).

The significance of this design component is that it
establishes reference points for straight line testing techniques
during design. Without an embedded breakpoint (decision,
branch, or collection point) this component is the same as the
dialogue component. With a decision node within a dialogue
boundary point, each MLU is represented by {<Si1, Si2, …
Sin>}, that is, a linear sequence of state changes Si1 through
Sin and branches before and after.

a b

d

c

 A ction
Scenarios a b c d e

Sc.1 1 2 3

e

Sc.2 1 2 3 4

Im 1

Om 1

Om 2
M LU1

M LU1

M LU2

M LU3

M LU2 M LU3

Fig. 6. Example of MLUs (Max Linear Components)

Dialog Component : a sequence of methods executed during
the interval bounded by input from an actor and the response
to that actor.

In an interaction diagram with the choice notation of Figure
7, sequences of messages / methods are executed during the
interval bounded by input from an actor and the response to
that actor. We can identify all possible paths from an actor
through the system to itself such as dialogue 1 (‘a b c’),
dialogue 2 (‘a b d e’), and so on.

a
b

d

c

 Action
Scenarios a b c d e

Sc.1 1 2 3

e

Sc.2 1 2 3 4

Im 1

Om1

Om2 DU1:(Im1, Om1) = {a, b, c }
DU2:(Im1, Om2) = {a, b, d, e }

DU1

DU2

Fig. 7. Example of Dialogue Components

Intelligent Test Plan Metrics on Adaptive Use Case Approach

73

This design component has significance for establishing
user (actor) acceptance test specification during design. These
specifications should be a refinement of user acceptance test
specifications defined by use case specifications during the
requirements phase. We can also consider a reusable design
pattern of this deign components. As part of the requirements
tracking process, each use case should be tracked to a set of
dialogue components at design time. DU represents {< Mi1,
……. Min>}, that is, the actor initiates Mi1(message) and
receives Min (message) and all other message are internal.
Dialogue is (Im, Om) where Im is an input message and Om
is an output message on the actor.

Ⅲ. Refined Action Matrix Approach

From this point, we will explain with one case study based
on a 'Restaurant application' use case in Figure 8. Focusing
on the customer actor's view, there are three high-level use
case scenarios such as the reservation, the normal service, and
the carry-out process.

From the requirement specification and the high-level use
case scenario analysis, we can design the sequential diagrams
(called interaction diagrams) through passing several steps. In
this paper, I will skip several steps to develop three sequential
diagrams from high-level use case scenarios showed in
Kim[11, 12, 14, 15] With these sequential diagrams in Figure
9, I can convert the action matrix and use case map dialog
through producing these sequential diagrams based on
high-level use case scenarios at design stage. One of these
sequential diagrams is 'Reservation use case' in Figure 9.

What is action matrix? Hurlbut [5] noted that an action
matrix presents a cross-match between each action that
is included in a use case with each scenario that performs
the action. scenario includes an ordered set of actions that
explains its course of actions. The use case action matrix is
intended to present the scenario designed in a tabular form as
the main course of action as a collection of actions that shows
the coverage of its use case action by all the variant scenarios
in Figure 9. Hurlurt also mentions that an alternative
representation of the matrix is a use case dialog map in
Figure 10.
Semantics : Each scenario consists of an ordered collection of
action units. The extended action matrix is

intended to tabularly represent the scenario designed as the
main course of action unit as a collection of cells that shows
the coverage of its use case action component by all variant
scenarios. Each action unit consists of the cluster of the
consecutive messages (methods, the basic actions) triggered,
also relates between the state and next state, and involves the
particular objects which send these messages.

Notation: In The first row of a matrix, each cell is matched
to a unique use case action unit and scenario combination.
The rows of a matrix are assigned as scenarios and the
columns are assigned as action units. If a use case action unit
is also included in the scenario, we make a one-to-one
correspondence between cells and integers which results in

sequential ordering of the use case action units in the
scenario. When a single use case action unit appears more
than once in a scenario, we can assign multiple not
necessarily contiguous integers in each cell. Since a bunch of
the consecutive use case action units may appear iteratively in
a scenario, we may parenthesize a bunch of integers that are
related with consecutive use case units.

U S E C A S E S C E N A R IO : n o r m a l s e r v i c e

C u st o m e r

C u s t o m e r

 p a n e l

t a b le

U S E C A S E S C E N A R IO : r e s e r v a t i o n

C u st o m e r
c u st o m e r

 p a n e l

R e s ta u ra n t
 m a n a g e r

d e s se r t

m a in m e a l
w a it re s s t a b le

U S E C A S E S C E N A R IO : c a r r y o u t

C u st o m e r

d e s se rt

m a in m e a l

R e s ta u ra n t

 m a n a g e r

m a in m e a l

w a it re s s W a it- in
- ro o m

c u st o m e r

 p a n e l

R e sta u ra n t

 m a n a g e r

W a it- in
 - r o o m

w a it re ss

Fig. 8. High-level Use Case Scenario 'Restaurant Service'
Application

Presentation Option: An alternative representation of the
matrix is possible by converting use case action units into
nodes in a direct graph with the Mealy's and the Moore's
Finite State Machine as well as Musa's Operational Profile
concept. When the matrix is presented in this fashion, it may
be alternatively refereed to as a use case dialog map that is
mentioned by Hurlbut [Hurl98].

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Main Path
(Reservation.)

 Variant 1
(Normal served)

 1 2 3 4 5 6 7 8 9 10 11 12 13

 Variant 2
(Carryout)

 1 2
 Variant 3
 (No Served)

 a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 o1 p1 r1 Total probability
of occurrences

0.5*1*0.9*1*1*1
= 0.45

0.3*1*0.99*1*1*1
*0.9*1= 0.24057

0.3*1*0.001*1
= 0.0003

0.2*1*0.1*1*1*1
= 0.02 1 2 3 4 5 6 7 8 9 10 11 12 13

Action unit \
Scenario

Fig. 9. Action Matrix for Restaurant Service Application

Mapping : Each column maps to a use case action unit.
Each row maps to a scenario. In a use case dialog map,
we assign each probability of occurrence to each link as a
weighted probability value, which is adopted by Musa's
Operational profile [9, 10]. Musa's approach is a quantitative
characterization of a system, which is retained for the
most-used part of the system and is reduced for lesser-used
parts with the amount of reduction related to the difference in
usage. That is, Musa's operational profile is frequently
weighted by criticality that reflects both how the system is
being used and the relative importance of the uses. We may
either guess the probability of occurrence on each branch of
the specific node (action) or survey the collection of data [3,
9, 10, 12, 13].

International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, May 2002

74

Ⅳ. A Conversion algorithm from sequential
diagrams to design component/ Action unit

Hurlburt [5] provided a tabular approach, termed an action
matrix, to the specifications of functional units. But, Hurlbut
failed to provide a mechanism that generates action matrices
from interaction diagrams. We have adapted his approach to
clearly represent all possible scenarios without keeping too
much duplication of action units. We also use the action
matrix and the use case dialog map to organize the behavioral
properties of the design, and to help generate the preliminary
test scheme and test plan by analyzing the interaction diagram
at the design stage.

The proposed algorithm has been influenced by several
other researches. In this process we have extended the action
matrix and use case dialog maps based on the advantages of
both the Moore [8] and Mealy [7] models in that the Mealy
model more easily represents a finite-state model by a table
and the Moore model is a node-weighted finite-state model.
In addition to applying these two models, we integrate Musa's
idea of operation profiles into the refined action model and
use case dialog map, which helps develop our test plan matrix
approach [12,13].

The following assumptions have been used in the
construction of the algorithm:

1. The input of the conversion algorithm is the basic inter-
action diagram(s) with either a single control object or
multiple control objects.

2. The output of the algorithm is a collection of design
components of which the action matrix consists.

3. When there are no more external messages, the process is
terminated.

4. When an actor sends an initial external event to the system
(that is, the interface object), it initializes a state S0.

5. Messages are called internal messages within the system
(from the interface object), Messages can be events,
methods (functions), or actions.

6. It happens the state changes on just the control object(s),
and has the choice notation(s) which makes the decision
(can apply n-ary branches) on the control object(s),

7. The state change on the control object(s)
8. For while internal messages are traced by the control

object, they will be clustered by an action unit.
9. When a message exits the system or the interface object

sends message to its own actor, the message is also called
the external event.

10. Initialize indexes for identifying each message (m), clustering
messages (i), setting to change state(j), and clustering
dialogue(k).

11. On the choice notation, we traverse the interaction diagram(s)
using Depth-First Search, called recursively.

How to identify design units to be traced on the Interaction
Diagram? First, I explain a simple algorithm to identify design
component in four steps:

1) Identify each method component starting from the initial
external event until there are no more messages on the
interaction diagram.

2) Identify each state on the control object (the so-called
'state object'), which will change whenever a message
comes in and out.

3) Also identify each reusable pattern component which is
the cluster of sequenced methods based on the boundary
of states.

4) Identify each dialog component based on its response
from the system after each external event occurs.

b1 d1

a1

e1

Served

f1 g1 h1 i1

Enter
& request

c1

 r1
No served

Reservation

Carry out

 No service (variant 3)

0.5

0.3

0.1

 Normal serv ice Wait-in-room

 Arrange
 waitress

Assign
 table

 Serve
 meal

1

0.99 1 0.9 1 11 1

0.1

0.001

 j1 l1 m1

 Cook Receipt
11

Accept
Request
 bill

Send
 bill

1 n1k1

Ready

Order

0.1

1
 o1 1 p1 11

Calculate
 bill

Pay
bill

1

Fig. 10. Use Case Dialog Map for Restaurant Service Application

Ⅴ. Test Plan Metrics based on Design Stage

Most existing testing methods for white-box testing and
black-box testing[1,11] are developed for traditional procedural
programs. Recently, object-oriented software testing methods
have been developed for object oriented programs with
white-box testing. None of the existing methods of testing
'design' at the design stage can directly be applied for object
oriented development methodologies. We propose to develop
different metrics for test plan developed based design. Our
testing approach emphasizes testing software design
specifications in the design stage while traditional software
testers concentrate on testing the program source code.
Actually, metric concepts are frequently used on routing in
switching networks. But We brought the metric concepts to
the software development in that the motivation for metrics
should come from ordering the unit & acceptance tests due to
the large numbers & ordering of scenarios in integration
testing.

5.1 Test Plan Metrics
This chapter focuses on the software testing metrics used in

the generation of object oriented test plans as part of Carlson's
use case methodology[3]. The test plan uses an action matrix
that contains a collection of executable sequences of use case
action units. The action matrix is generated from the
interaction diagram at the design stage. Software testing
metrics are employed to improve the productivity of the
testing process through scenario prioritization. In other words,
the software test metrics are available to evaluate the use case
scenarios defined by the action matrix so that a test plan will
emerge that improves the productivity of the testing process.
The tester has a broad range of options to choose from when
identifying 'action units'. The simplest choice is to let each

Intelligent Test Plan Metrics on Adaptive Use Case Approach

75

method be an action unit. A drawback to this approach is that
the number of action units may be quite large. If so, the test
plan generator can choose one of the other options based on
the design component (or test units) concept introduced. In
selecting 'reusable pattern component', the assumption is that
reusable pattern design components are also used as part of
the design process. In selecting 'state units', the assumption is
that an event state model has been developed. Presently, We
have a conversion tool that analyzes interaction diagrams, and
automatically generates 'state component'. The same tool can
be used to automatically identify 'dialogue component'. The
basic reason for choosing one of these units is that each
offers its own unique approach to unit testing based on
proven testing techniques. For example, reusable pattern test
plans can be used with reusable pattern. State based testing
techniques can be used with state units. Actor based
acceptance testing can be used with dialogue components.
Scenario based integration testing techniques can be used with
use case scenarios to identify an ordered list of test scenarios.

User acceptance testing can be used with use case
requirements. Based on this choice, the test plan contains a set
of action units together with appropriate unit testing
techniques to be applied to these units. The software metrics
described in the next section can be used to yield a more
productive order in which these units can be tested.

The purpose of this chapter is to 'optimize' the order in
which the scenarios defined by the rows of the action matrix
are executed. This approach was adopted from Musa's work
on Operational Profiles [9,10]. Musa's approach assumes that
the designer has sufficient insight to assess the 'criticality' of
action units and assign weighting factors to the elements of
the action matrix [7,8]. This approach differs in that the
designer analyzes the scenarios based on the 'reusability' of
their components or subpaths.

Table 1 illustrates the test plan metrics such as most critical
scenarios, most reusable components, and most reusable
subpaths. The software test metrics described in this section
focus on the length, criticality and reusability properties of the
scenarios / action units as summarized in Table 5.1.

Table 1. Test Plan Metrics

 Length

 Criticality

 Reusability

1) Shortest path (simple path) - least steps of actions

2) Longest path (hardest path) - most steps of actions

1) Most critical path

2) Least critical path

 1) Most reusable components

Sub-path Most reusable sub-path

 2) Least reusable components
Component

Weight value
 (w)

Measures of test path

w = 1

≥ 1w

≥ 0w

≥ 0 AND ⎤ = 1w

w > 1

w > 1

*notation: w: weight value u : not

First, the issue of Length is two aspects of shortest path
and longest path. I think it is not important for software

design development. But it is useful if we use this issue with
other categories of the metrics.

Second, the issue of Criticality is important to choose an
ordered list of test scenarios.

Third, the issue of Reusability is also important to identify
and maximize the reusable components. Therefore, we use
scenarios and action units to develop a new path (i.e.,
scenario) with the smallest number of alterations from the
existing paths.

To apply test plan metrics for each of the approaches
described in Table 1 will be applied to the "Restaurant
service" application.

We calculate total probability of occurrence as follows :
∀i Use case Scenarioi ⊆ A Use Case R (R is Restaurant

Application)
For all use case scenarios between the starting point and

the ending point, the particular scenario Scenarioi is included
in a Use case R.

∀i action uniti ⊆ use case Scenarioi

For all action units within a particular use case Scenarioi
we can calculate the total probability of occurrence with

(∏ the weighed factor of Action unit i
* probability of

action uniti) / (∑ probabilityi).

b1 d1

a1

e1

Served

f1 g1 h1 i1

Enter
& request

c1

 r1
No served

Reservation

Carry out

 No service (variant 3)

0.5

0.3

0.1

 Normal serv ice Wait-in-room

 Arrange
 waitress

Assign
 table

 Serve
 meal

1

0.99 1 0.9 1 11 1

0.1

0.001

 j1 l1 m1

 Cook Receipt
11

Accept
Request
 bill

Send
 bill

1 n1k1

Ready

Order

0.1

1
 o1 1 p1 11

Calculate
 bill

Pay
bill

1

Fig. 11. Ordered List of Test Scenarios

Figure 10 shows the alternative representation of the action
matrix, the use case dialog map, to apply the calculation of
the total probability of occurrence in each use case scenarios.
Figure 9 shows tabularly all possible action units of each use
case scenario in the use case restaurant service. The Mealy
model and the Moore model are theoretically equivalent, but
the Mealy model is a link-weighted model and the Moore
model is a node weighted model [Beiz95]. We apply with
both weight concepts. As a result, each action unit is assigned
a weighted value with the value one and each link is also a
probability of occurrence.

Most Critical Scenario
The first metric is an adaptation of Musa's 'most

critical operational profile' approach [9,10]. This metric
places greater weight on those scenarios that use action units
thought to be most critical. It assumes that the designer can
make these judgments. Later metrics will not have to assume
that someone is available to make such judgments, since they
can be produced automatically.

Figure 9. shows the action matrix of the restaurant service

International Journal of Fuzzy Logic and Intelligent Systems, vol. 2, no. 1, May 2002

76

application. The use case scenarios defined by the rows of
this matrix include: reservation (variant 0), normal service
(variant 1), carryout (variant 2), and no served (variant 3) use
case scenarios. The probability of occurrence of each scenario
is: variant 0 (0.45), variant 1(0.2673), variant 2 (0.02), and
variant 3 (0.0003). As this result, we can make a decision to
choose the 'reservation' scenario because it has the highest
value of probability of occurrence. Figure 11 displays the
ordered list of test scenarios as follows: the first direct path of
reservation scenario which consists of the sequence of action
units 'a1->e1->f1->g1->h1->i1->j1->k1->l1->m1->n1->o1->p1'
with the amounts of weighted values equal to 13, the second
direct path of normal service scenario which consists of
sequences of action units 'b1->d1->e1->f1->g1->h1->i1->j1->
k1->l1->m1->n1->o1->p1' with the amounts of weighted values
equal to 14, the third direct path of carryout service scenario
which consists of sequence of action units 'c1->d1->e1->g1->
h1->i1->j1->k1->l1->m1->n1->o1->p1' with the amounts of
weighted values equal to 13, and the fourth direct path of no
service scenario which consists of sequence of action units
'b1->r1, and other combinations like Figure 11.

Most Reusable Components
This approach simply measures the reusability of action

units in each row of the action matrix. This metric places
greater weight on those action units that are reused the most
by the collective group of scenarios being analyzed.

Figure 12 (a) displays three different types of geometric
figures: a triangle, a rounded rectangle, and an oval. The
triangle implies a particular component is used just one time
on just a single one of the paths. The rounded rectangle
implies that this component us used on two paths. The oval
implies that this component is used on three paths. The
reusability weight is defined as the number of paths that use
the particular component.

Therefore, Figure 12 (b) shows the values 'reusability
weight' of each action unit. The values can indicate whether a
particular action unit is reusable or not. We may say that the
unit action is reusable when the value of the particular unit is
at least 2.

Figure 9 indicates the total values of reusability components
on each path (scenario). Due to the 'most critical scenario', we
say that path1 (reservation) is better than path 2 (normal
service), which is better than path 3 (carryout), which in turn
is better than path 4 (no service). But if we measure each
path based on the 'most reusable component', then we
recognize that path 2 (normal service) is more usable than
path 1 (reservation).

Most Reusable Sub-Paths
This metric is similar to the previous metric except that it

places greater weight on scenarios which share common
subpaths. We shows how to identify each cluster of the
sequence of reusable components in all possible scenarios of
the restaurant use case application[2]. Figure 12 show three
different types of geometric figures: an elliptical figure, a
shaded elliptical figure, and a rounded rectangle. The elliptical

figure shows the cluster over two paths with reusable
subpaths. The shaded elliptical figures show iteratively or
repeatedly the cluster of reusable subpaths in paths. The
rounded rectangle displays the smallest cluster, which consists
of two components, in paths, but it is less useful because this
size is smaller than the smallest dialog unit within this
application. It displays the core pattern (cluster) in the use
case dialog map [2].

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Main Path
(Rese rvation.)

 V ariant 1
(N orm al served)

 1 2 3 4 5 6 7 8 9 10 11 12 13

 V ariant 2
(Carryout)

 1 2
 V ariant 3
 (N o Served)

 a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m 1 n1 o1 p1 r1

 a1 b1 c1 d1 e 1 f1 g1 h1 i1 j1 k1 l1 m 1 n1 o1 p1 r1

W eighted value

R eusability W e ighty 1 2 1 2 3 2 3 3 3 3 3 3 3 3 3 3 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P ath 1 Path 2 Path 3 Path 4

#3

#2

 Total
am ount

11 11 11 0

 1 3 1 1

35 39 35 2

 1 2 3 4 5 6 7 8 9 10 11 12 13

(a)

(c)

(b)

Fig. 12. Most Reusable Component

On path1 and path2, we can see the 'longest reusable
subpath' which is 'e1' through 'p1' represented by the ellipse.
On path1, path2, and path3, we can see the reusable subpath
'g1' through 'p1',represented by the shaded elliptical figures.

Length of Path
This metric is not meaningful for itself in our approach, but

applies the most reusable subpath to measure the length of the
subpath. Based on the ordered list of test scenarios with the
most critical scenario, we can find the shortest and longest
length of all paths from the starting point and the ending
point.

If we just use this metric to identify a important path, it is
not meaningful that path 4 is the shortest path with two action
units and path 2 is the longest path with fourteen action units.
In reality, we say that the shortest path (no service) is a
dummy path (no service). After done by most critical scenario,
we had better apply this metric to recognize the most
important subpath. Therefore, we can use this metric of
the shortest and the longest path on the concepts of most
critical scenario and most reusable component.

Collection of Total Reusable Weight Values and Total Critical
Weight Values. Finally, we can calculate the collection of total
reusable values and total critical weight values to find the
significant unit/path. We adapt Musa's frequent weighted
approach [Musa92,93]to our critical weighted issue.

We calculate total weighted values with the formula below:

Internal shared path (ISP) = ∑(Center-weight (CW) +
Westside-weighted (WW) + Eastside-weighted (EW)).

Intelligent Test Plan Metrics on Adaptive Use Case Approach

77

We get the same result as the issue of the most reusable
component. As a result, we can clearly determine a basic
main path, by first making an ordered list of all paths.

Ⅵ. Conclusion

Traditional software testers concentrate on testing the
program source code in the implementation stage or testing
stage, while our testing approach will emphasize testing
software design specification (action matrix or state transition
diagram/table) in the design stage. In the design phase of our
object oriented development methodology, We will focus on
testing 'action matrix & use case dialog maps' that is
generated from sequential diagram (called interaction diagram),
which represents the behavioral properties of system design.
That is actually testing "specifications" before implementing
real program source codes (program statements). We shall
suggest scenario based testing which is consisted of most
critical scenario, most reusable components, and most
reusable subpaths. Scenario based testing will make a decision
to order of all possible scenarios to test first, to maximize
reusability, and to minimize test cases. As a result, this can
lead for designer to design better system with information of
reusable design components

References

[1] Breizer, Boris, “Black-Box Testing”, John Wiley & Sons,
Inc, NY, 1995

[2] Kim, YoungChul. A Use Case Approach to Test Plan
Generation during Design, Ph.D, Thesis Illinois Institute
of Technology, Chicago, IL 2000

[3] Carlson, C. R. “Object-Oriented Information Systems: Archi-
tectural Strategies”, Viking Technologies Inc., Chicago,
1997.

[4] Firesmith, D. “Use cases: The Pros and Cons,” ROAD,
vol. 2, no. 2, pp2-6, 1995.

[5] Hurlbut, R. “Managing Domain Architecture Evolution
though Adaptive Use Case and Business Rule Models”,
PH.D Thesis, Illinois Institute of Technology, 1998.

[6] Jacobson, I., et al, “Objet-Oriented Software Engineering:
A Use Case Driven Approach”, Addison-Wesley/ACM
press, 1992.

[7] Mealy, G.H. “A Method for Synthesizing Sequential Cir-
cuits”, Bell System Technical Journal vol 34, 1955.

[8] Moore, E. F. “Gedanken Experiments on Sequential Mach-
ines”, In Automata Studies. Annals of Mathematical
Studies #34. Princeton,Nj: Princeton University Press,
1956.

[9] Musa, J.D. “The Operational Profile in Software Reliability
Engineering: An Overview”, AT&T Bell Labs. NJ, 1992.

[10] Musa, J.D. “Operational Profile in Software Reliability
Engineering: An Overview”, AT&T Bell Labs. NJ,1993.

[11] Marick, Brian, “The Craft of software testing: subsys-
tem testing including Object-Based and Object-Oriented

testing”, Prentice Hall Series, NJ, 1995.
[12] Kim, YoungChul, Carlson, C.R. “Scenario based inte-

gration testing for Object-oriented software development”,
IEEE The Eighth Asian Test Symposium (ATS'99),
November 16-18, 1999, Shanghai, China.

[13] Kim, YoungChul, Carlson, C.R “Adative Design Based
Testing for OO Software”, ISCA 15th International
Conference on Computers and Their Applications (CATA-
2000), New Orleans, Louisiana, March 2000

[14] Tae-HuiYoun, Y.Kwon, J. Lee, YoungChul Kim, “Deve-
lopment of Use Case based Testing Tool for Tele-
communication System”, Proc. Of The 13'th KISS Annual
Conference Region Daejeon, vol. 13, no. 1, 2001

[15] Tae-HuiYoun, YoungChul Kim, J. Lee, “Development of
Use Case Tool for Design Component Unit Framework
based on Interaction Diagram”, Proc. Of The 16'th
KIPS Annual Fall Conference, vol. 8, no. 2, 2001

R. Young Chul Kim
He received the B.S. degree in computer
science from Hongik University in 1985. In
2000, he received the Ph.D. degree in
computer science from Illinois Institute
Technology. From 2000 to 2001, he was a
Senior Researcher who had charged of

Embedded Software development Project (Case Tools) at LG
Industrial Systems R&D Center. In 2001, he joined the School
of Electrical, Electronic & Computer Engineering, Hongik,
Jochiwon, Korea, where he is currently a professor. His
research interests include data based model area, use case
methodology, case tool development, embedded software area,
software metrics, and design maturity model.

Jae hyub Lee
He received the B.S. degree in Chemical
Engineering from Hongik University in
1984, and the M.S. and Ph.D.degree in
Computer Science from Illinois Institute of
Technology in 1987 and 1992, respectively.
In 1993, he joined the School of
Information Technology, Korea University

of Technology and Education, Chonan, Korea, where he is
currently an associate professor. His research interests include
computer graphics, and multimedia.

	Intelligent Test Plan Metrics on Adaptive Use Case Approach
	Abstract
	Ⅰ. Introduction
	Ⅱ. Design Component
	Ⅲ. Refined Action Matrix Approach
	Ⅳ. A Conversion algorithm from sequential diagrams to design component/ Action unit
	Ⅴ. Test Plan Metrics based on Design Stage
	Ⅵ. Conclusion
	References

